Development of piezoelectric micromachined ultrasonic transducers

نویسندگان

  • Firas Akasheh
  • Todd Myers
  • John D. Fraser
  • Susmita Bose
  • Amit Bandyopadhyay
چکیده

Piezoelectric micromachined ultrasonic transducers (pMUTs) are an example of the application of MEMS technology to ultrasound generation and detection, which is expected to offer many advantages over conventional transducers. In this work, we investigate pMUTs through novel design and fabrication methods. A finite element (FE) model, with original tools to measure device performance, was developed to design and optimize pMUTs. A pMUT for the operating range of 2–10 MHz in water and having maximized energy coupling coefficient was modeled, designed, fabricated, and tested for its resonance frequency and coupling coefficient. The model predictions for the resonance frequency were in excellent agreement with the measured values, but not as good for the coupling coefficient due to the variability in the measured coupling coefficient. Compared to conventional ultrasonic transducers, pMUTs exhibit superior bandwidth, in excess of 100%, and offer considerable design flexibility, which allows their operation frequency and acoustic impedance to be tailored for numerous applications. © 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capacitive micromachined ultrasonic transducers for robotic sensing applications

Ultrasonic ranging is the most common method used in robotic systems for distance or proximity sensing. The heart of the method is an ultrasonic transducer that emits and detects ultrasound. There are mainly two types of transducers existing in the market today; piezoelectric and electrostatic. In this paper, we propose the use of a new type of transducer, which is capacitive micromachined ultr...

متن کامل

Capacitive Micromachined Ultrasonic Transducers: Theory and Technology

Capacitive micromachined ultrasonic transducers ~CMUTs!, introduced about a decade ago, have been shown to be a good alternative to conventional piezoelectric transducers in various aspects, such as sensitivity, transduction efficiency, and bandwidth. In this paper, we discuss the principles of capacitive transducer operation that underlie these aspects. Many of the key features of capacitive u...

متن کامل

Micromachined Capacitive Ultrasonic Immersion Transducer for Medical Imaging

Piezoceramics have been the dominant transducer technology in ultrasound medical imaging for several decades. Recent progress in surface micromachined capacitive ultrasonic immersion transducers makes them an alternative transducer technology, especially in highly integrated twodimensional arrays. This paper demonstrates that the surface micromachined capacitive ultrasonic immersion transducer ...

متن کامل

Progress in Development of HIFU CMUTs for use under MR-guidance

High intensity focused ultrasound (HIFU) guided by magnetic resonance imaging (MRI) is a noninvasive treatment that potentially reduces patient morbidity, lowers costs, and increases treatment accessibility. Traditionally, piezoelectric transducers are used for HIFU, but capacitive micromachined ultrasonic transducers (CMUTs) have many advantages, including fabrication flexibility, low loss, an...

متن کامل

Finite Element Modeling of a Capacitive Micromachined Ultrasonic Transducer

Transducers based on piezoelectric crystals dominate the biomedical ultrasonic imaging field. However, fabrication difficulties for piezoelectric transducers limit their usage for complex imaging modalities such as 2D imaging, high frequency imaging, and forward looking intravascular imaging. Capacitive micromachined ultrasonic transducers (CMUTs) have been proposed to overcome these limitation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004